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SOUO,OH + 2H*

Figure 4-1. Reaction scheme illustrating the competition between the formation of dissolved species
(UO,** and UO,L;?-3") and surface species (SOUQ,OH).
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13



(a)

100 o c 00 ©O
- ?ﬁ
‘™ 10 - O %M
£ ® 9%
© 1 =
x me
o-Aluing {Nakayama
0.1 = 2nd Sakamoto, 1981}
a-Aluming {thts study)
- Quartz {8,70.08 ;™g™)
Quartz (S,»0.5 m>g™}
0.01 "N S T— S
5 ] 8 ) 10 11
pH
(b) 1000 E‘ Y T T T =Y T T T T H T
100 &
ooy, - O
o s
£ 10 E o]
E -
1
©
X .
O a-Alming (Nekayama
amd Saksmoto, 1891}
0.1 D  a-Alsnine {this study)
B Quarte{S=003mg")
O Quartz (8,08 m>g*)
0‘01 3 i 1 l ! ! 1 , 4 I i
4 5 6 8 9 10 11

Figure 5-2. The effect of surface area and normalization on Np5* sorption (from Bertetti and others,
1998): (a) K, data from experiments by Bertetti and others using fine-grained quartz [specific
surface area (SA) = 0.5 m?2/g], coarse-grained quartz {0.03 m?/g], and a-alumina [0.23 m?/g], and by
Nakayama and Sakamoto using finer-grained a-alumina [2.5 m?/g], and (b) sorption data in graph
(a) normalized to the sorbent’s specific surface area (K, = K /SA) {ml-m-2, milliliter per square

meter; ml-g-!, milliliter per gram].

14



100

7 80 C. Shale ]
0 A. Shale

= <——VW. Granite

3 S.G. Basalt

Q | ]
2 60

4

o,

Z

[\

Q40 — —
-

5 «— Oxidized S.G. Basalt

@)

o4

0

(o9

TIME (days)

Figure 5-3. Behavior of 23’Np (initially NpO,*) in rock-water systems. Rocks studied include

Conasauga (C.) Shale, argillaceous (A.) shale, Westerly (W.) Granite, Sentinel Gap (S.G.) Basalt, and
oxidized S.G. Basalt (pretreated with sodium hypochlorite) (from Bondiette and Francis, 1979).
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Figure 5-6. Breakthrough of 241Am from interbed packed column (solid diamonds represent data
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Figure 5-7. Breakthrough of 23Pu from interbed packed column (solid diamonds represent data
points). Total 23°Pu recovery was 0.1 percent of the initial amount added to the column (from
Newman and others, 1995).
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points and the line represents the model fit). Total 233U recovery was 90.3 percent of the initial
amount added to the column (from Newman and others, 1995).
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Figure 5-10. Breakthrough of 241Am from crushed-basalt packed column (solid diamonds represent
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Figure 5-13. Variation of calcite saturation indices (SI ,;,) and %08y partitioning (K,) between the
solution and an ion-exchange phase in a one-dimensional column at chemical steady state (from

Reardon, 1981).
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Figure 5-14. Temporal and spatial changes in 90Sr partitioning (K;) between the solution and an
ion-exchange phase in a dynamically evelving system. After 17 days of transport time, the system
is near chemical steady state (from Reardon, 1981).
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Figure 5-15. Fitted reactive transport simulations and experimental breakthrough curves for U(VI)
in columns packed with sedimentary interbed materials.
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Figure 5-16. Simulated breakthrough curves for the transport of one pore volume of 107 M U(VI)
in 12 INEEL surface- and ground-water samples for (a) a total site density assuming a constant pH
of 8, and (b) a total site density assuming a constant pH of 8.48 [M, molarity].
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Figure 5-17. Np aqueous concentrations as a function of distance according to PHREEQC
simulations of one-dimensional advective-dispersive transport with a surface and aqueous
complexation model. Np infiltration results are provided for different timesteps (labels next to
curves) and for simulations in which equilibrium with calcite was either specified (dashed line) or
not specified (solid line). Simulations used Np aqueous thermodynamic data from the ANSTO data
base.
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Figure 5-18. Np aqueous concentrations as a function of distance according to PHREEQC
simulations of one-dimensional advective-dispersive transport with a surface and aqueous
complexation model. Np infiltration results are provided for different timesteps (labels next to
curves) and for simulations in which equilibrium with calcite was either specified (dashed line) or
not specified (solid line). Simulations used Np aqueous thermodynamic data from the EQ3/6 data
base.
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Figure 5-19. Np aqueous concentrations as a function of timestep. Np infiltration results identify the
source of Np thermodynamic data used (ANSTO or EQ3/6) and whether calcite equilibrium was
specified throughout the one-dimensional column.
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Figure 5-20. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).
Equilibrium with calcite was not specified. Np thermodynamic data were taken from the ANSTO
data base.
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Figure 5-21. Np aqueous concentrations as a function of distance according fo PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).

Equilibrium with calcite was not specified. Np thermodynamic data were taken from the EQ3/6 data
base.
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Figure 5-22. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to
curves). Equilibrium with calcite was specified. Np thermodynamic data were taken from the
ANSTO data base.
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Figure 5-23. Np aqueous concentrations as a function of distance according to PHREEQC reactive
transport simulations. Np cleanup results are provided for different timesteps (labels next to curves).
Equilibrium with calcite was specified. Np thermodynamic data were taken from the EQ3/6 data
base.
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Figure 5-24. Np aqueous concentrations as a function of timestep as simulated by PHREEQC for
mid-column and end-of-column sampling points. Np cleanup results identify whether calcite
equilibrium was specified throughout the one-dimensional column. Np thermodynamic data were
taken from the ANSTO data base.
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Figure 5-25. Np sorption isotherms calculated from PHREEQC simulations according to various
geochemical conditions (specification or lack thereof of calcite equilibrium; presence or absence
of water from well USGS 92),
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Figure 5-26. Np sorption isotherms calculated from PHREEQC simulations according to various
geochemical conditions (specification or lack thereof of calcite equilibrium; presence or absence of
water from well USGS 92) and to the source of Np aqueous thermodynamic data (ANSTO or

EQ3/6 data base).
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Figure 6-1. Model domain and grid of the Waste Area Group 7 numerical simulator, Radioactive
Waste Management Complex and vicinity, Idaho National Engineering and Environmental
Laboratory, Idaho.
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Figure 6-2. Variograms for the top elevation (a) and thickness (b) of surficial sediments in the
model domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Environmental Laboratory, 1daho.
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Figure 6-3. Variograms for the top elevation (a) and thickness (b) of the A-B interbed in the model
domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Envirenmental Laboratory, Idaho.
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Figure 6-4. Variograms for the top elevation (a) and thickness (b) of the B-C interbed in the model
domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
Environmental Laboratory, idaho.
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domain of the Waste Area Group 7 numerical simulator, Idaho National Engineering and
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Figure 6-6. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the surficial sediments in the vicinity of the Radioactive Waste Management Complex,
Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-7. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-8. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the surficial sediments in vicinity of the Radioactive Waste Management Complex,
Idaho Nationa}! Engineering and Environmental Laboratory, Idaho.

46



"207,000 F
206,000 |
205,000 F
204,000 F
g L
& 20s.000F
P
m
=
Z 202,000 F
&) s
Z "
=
bl
£ 201000
) g
Z.
200,000 |
199,000 F
198,000 |
197.000 T T Lo venaadoaaoassa Lo v s b i Lo W PR RS B Liys

76,000 77,000 78,000 79,000 80,000 81,000 82,000 83,000 84,000 85,000

EASTING, IN METERS

Idaho State Plane Coordinate System
East Zone Datum NAD27

&

EXPLANATION : ) )
Index to kriging confidence

MODEL DOMAIN AND GRID LINES

AREA OF INEFFECTIVE KRIGING IN THE MODEL DOMAIN
--— ROAD
x POINT OF MEASUREMENT

Figure 6-9. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the surficial sediments in the Waste Area Group 7 model domain, Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-10. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the A-B sedimentary interbed in the vicinity of the Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-11. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-12. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the A-B sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.

50



207,000 |-

206,000 |

205,000 |

204,000

203,000

202,000 £

NORTIING, IN METERS

201,000 F

200,000

199,000 |

198,000 [

197,000 Lo invee ey Laay P S IS SRR Lo aagal . N Y F e | sraad o
76,000 77,000 78,000 79,000 80,000 81,000 82,000 83,000 84,000 §&5000
EASTING, IN METERS
Idaho State Plane Coordinate System ini . maximum
East Zone Datum NAD27 EXPLANATION i ;
BE MODEL DOMAIN AND GRID LINES Inder to kriging confidence

AREA OF INEFFECTIVE KRIGING IN THE MODEL DOMAIN

ROAD
POINT OF MEASUREMENT

Figure 6-13. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the A-B sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-14. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the B-C sedimentary interbed in the vicinity of the Radioactive Waste
Management Complex, Idaho National Engineering and Environmental Laboratory, 1daho.
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Figure 6-15. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-16. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the B-C sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-17. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the B-C sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, 1daho.
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Figure 6-18. Discretization, measured points, and relative confidence in kriged estimates for the top
elevation of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, [daho.
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Figure 6-19. Discretization, measured points, and relative confidence in kriged estimates for the
top elevation of the C-D sedimentary interbed in the Waste Area Group 7 model domain,
Radioactive Waste Management Complex, Idaho National Engineering and Environmental
Laboratory, Idaho.
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Figure 6-20. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the C-D sedimentary interbed in the vicinity of the Radioactive Waste Management
Complex, Idaho National Engineering and Environmental Laboratory, Idaho.

58



207,000

206,000

I e e e

T

205,000

T

204,000

T

205,000

202,000

201,000

T T T

NORTHING, IN METERS

T

200,000

T

199,000

198,000 -

197,000 OIS N PRV Y A I AT AT S S S ST U UT VAT U N A O G ST S A S S AT ATEV IS WO W I UPUr T W A AT SN AT IV IV AT ST ATEN N N AT TSN AT S AN U IV SN OV S IS T Ut AN T A

76,000 77,000 78,000 79,000 80,000 81,000 82,000 83,000 B4,000 85,000

EASTING, IN METERS minimum maximum

EXPLANATION
MODEL DOMAIN AND GRID LINES

Idaho State Plane Coordinate System
East Zone Datum NAD27

Index to kriging confidence

AREA OF INEFFECTIVE KRIGING IN THE MODEL DOMAIN
-.— ROAD
x POINT OF MEASUREMENT

Figure 6-21. Discretization, measured points, and relative confidence in kriged estimates for the
thickness of the C-D sedimentary interbed in the Waste Area Group 7 model domain, Radioactive
Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho.
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Figure 6-22. Location of spreading areas, Radioactive Waste Management Complex, and selected
boreholes used in the 1999 tracer monitoring program, Idaho National Engineering and
Environmental Laboratory, Idaho.

60



S 351

N

S

_m .

o & 25

w5 20

55 15 1

=@ 101

of=]

— 0O 51

L

£ 0
e} © - < N~ o (32} (o] [*2} [} [Fe) @
© © I~ N~ N~ Q 0] <« o] (2] D (*2]
[*)) (@) D [¢)} » [=2] (o>} (o)) » D (>} [o2]
= Al - o ~ - Al - -~ -~ - Al
| YEAR

I

Figure 6-23. Flow diversions to the spreading areas from January 1965 to January 2000, Idaho
National Engineering and Environmental Laboratory, Idaho.
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Figure 6-24. Southwestern portion of the Idaho National Engineering and Environmental

Laboratory showing contours on the water table of the Snake River Plain aquifer and inferred
directions of ground-water movement, March 1972 (meodified from Barraclough and others, 1976,

fig. 33).
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Figure 6-25. Generalized net increase of the regional water table July 1981 to July 1985 (from

Pittman and others, 1988, fig. 10), Snake River Plain aquifer, Idaho National Engineering and
Environmental Laboratory, Idaho.
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Figure 6-26. Water levels in borehole USGS 88 from January 1975 to July 1998, Idaho National
Engineering and Environmental Laboratory, Idahe.



